recategorized by
437 views
0 votes
0 votes

Let $n$ be a positive real number and $p$ be a positive integer. Which of the following inequalities is true?

  1. $n^p > \frac{(n+1)^{p+1} – n^{p+1}}{p+1}$
  2. $n^p < \frac{(n+1)^{p+1} – n^{p+1}}{p+1}$
  3. $(n+1)^p <  \frac{(n+1)^{p+1} – n^{p+1}}{p+1}$
  4. none of the above
recategorized by

1 Answer

0 votes
0 votes
$$\begin{align}(n+1)^{p+1} - n^{p+1} &= \left(n^{p+1} + \dbinom{p+1}{1}n^p + \cdots + 1\right) - n^{p+1}\\
&=  \dbinom{p+1}{1}n^p + \cdots + 1 \\
&> \dbinom{p+1}{1}n^p & (\because n > 0) \\
&= (p+1)n^p.\end{align}$$

Thus,

$$n^p < \dfrac{(n+1)^{p+1} - n^{p+1}}{p+1}.$$

So option (b) is correct

Related questions

585
views
2 answers
2 votes
Arjun asked Sep 23, 2019
585 views
Let ... +8+15+25}{4} \right) ^2 . \end{array}$ Then$V_3<V_2<V_1$V_3<V_1<V_2$V_1<V_2<V_3$V_2<V_3<V_1$
485
views
0 answers
0 votes
Arjun asked Sep 23, 2019
485 views
The smallest positive number $K$ for which the inequality $\mid \sin ^2 x - \sin ^2 y \mid \leq K \mid x-y \mid$ holds for all $x$ and $y$ is$2$ ... $K$; any $K>0$ will make the inequality hold.
966
views
1 answers
1 votes
Arjun asked Sep 23, 2019
966 views
Let $\omega$ denote a complex fifth root of unity. Define $b_k =\sum_{j=0}^{4} j \omega^{-kj},$ for $0 \leq k \leq 4$. Then $ \sum_{k=0}^{4} b_k \omega ^k$ is equal to$5$5 \omega$5(1+\omega)$0$
806
views
1 answers
1 votes
Arjun asked Sep 23, 2019
806 views
If $0 <x<1$, then the sum of the infinite series $\frac{1}{2}x^2+\frac{2}{3}x^3+\frac{3}{4}x^4+ \cdots$ is$\log \frac{1+x}{1-x}$\frac{x}{1-x} + \log(1+x)$\frac{1}{1-x} + \log(1-x)$\frac{x}{1-x} + \log(1-x)$