recategorized by
959 views
2 votes
2 votes

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable with $g'(x^2)=x^3$ for all $x>0$ and $g(1) =1$. Then $g(4)$ equals

  1. $64/5$
  2. $32/5$
  3. $37/5$
  4. $67/5$
recategorized by

2 Answers

2 votes
2 votes
$\underline{\mathbf{Answer:D}}$

$\underline{\mathbf{Solution:}}$

 $\begin{align}\textbf{Given:} \;\;\;\mathrm{x^2 = t > 0 }\\ \text{On integrating above equation, we get:} \\ \ \mathrm{g’(t) = t^{\frac{3}{2}}}\\ \mathrm{g(t) = \frac{2}{5}t^{\frac{5}{2}}} + \mathrm C \\ \textbf{Given} \; \mathrm g(1) = 1\\  \Rightarrow \mathrm C = \dfrac{3}{5} \\ \Rightarrow \mathrm{g(x^2) = \dfrac{2}{5}x^5 + \dfrac{3}{5} \\ \text{and,}\; g(2^2) = \dfrac{2}{5}2^5 + \dfrac{3}{5} \\= \dfrac{67}{5}} \end {align}$

$\therefore \mathbf D$ is the correct option.
edited by
1 votes
1 votes

g'(x2) = x3

let x2 = y so given equation becomes g'(y) = y1.5

Inegrating it wrt y,   g(y) = $\frac{y^{2.5}}{2.5}$  =>   g(x2) = $\frac{x^{5}}{2.5}$

g(4) implies x=2, Therefore  $\frac{x^{5}}{2.5}$ = $\frac{32}{2.5}$  =  $\frac{64}{5}$

Related questions

578
views
1 answers
0 votes
go_editor asked Sep 13, 2018
578 views
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly increasing function. Then which one the following is always true?The limits $\lim_{x \rightarrow a+} f(x) $ and ... cannot be any real number $L$ such that $f(x)>L$ for all real $x$
618
views
3 answers
3 votes
go_editor asked Sep 13, 2018
618 views
Consider the function $f(x) = \dfrac{e^{- \mid x \mid}}{\text{max}\{e^x, e^{-x}\}}, \: \: x \in \mathbb{R}$ ... differentiable anywhere$f$ is continuous everywhere, but not differentiable at exactly one point$f$ is differentiable everywhere
476
views
0 answers
0 votes
go_editor asked Sep 13, 2018
476 views
Let $ f(x, y) = \begin{cases} \dfrac{x^2y}{x^4+y^2}, & \text{ if } (x, y) \neq (0, 0) \\ 0 & \text{ if } (x, y) = (0, 0) \end{cases}$Then $\lim_{(x, y) \rightarrow (0,0)}$f(x,y)$equals $0$equals $1$equals $2$does not exist
484
views
1 answers
2 votes
go_editor asked Sep 13, 2018
484 views
Let $f : (0, \infty) \rightarrow (0, \infty)$ ... at first and then strictly increasing$h$ is strictly increasing at first and then strictly decreasing